Synthesis of C-D-ring analogues of the azasteroid A25822

Andrew J. Sutherland, ${ }^{a}$ James K. Sutherland ${ }^{a, *}$ and Patrick J. Crowley ${ }^{b}$
${ }^{a}$ Chemistry Department, Victoria University of Manchester M13 9PL, UK
${ }^{\text {b }}$ Zeneca Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire RG12 6EY,

The α, β-unsaturated imines 2 and 4 were synthesised from 2,3,6-trimethylcyclohex-2-enone.

Introduction

Our previous work ${ }^{1}$ on analogues of the antifungal azasteroids $\mathbf{1}^{2}$ suggested that rings A and B might not be necessary for biological activity so we set out to prepare some analogues of the azasteroids with general structure 2.

Results and discussion

The readily available enone 6^{3} was the chosen starting material. Our first objective was to synthesise the imine 3 via the dione 7 ; however, attempts to effect Michael addition of the $\mathrm{Li}-\mathrm{Cu}$ enolate of enone 6 to trans-but-2-enal led to 1,2 addition to the aldehyde. The trimethylsilyl enol ether of 6 reacted with TiCl_{4} and trans-but-2-enal ${ }^{4}$ in a similar way, while replacement of butenal with its dimethylacetal ${ }^{5}$ did not give a reaction. We then examined alkylation of $\mathbf{6}$; reaction with allyl bromide$\mathrm{LiNPr}^{\mathrm{i}}{ }_{2}-\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}$ (HMPA) gave the allyl enone 8 (88%). Attempts to aminate ${ }^{6}$ the allyl double bond by direct substitution of a borane intermediate were unsuccessful, but hydroboration and oxidation gave the alcohol $9(63 \%)$ which was mesylated (76%) and then converted into the azide 10 (71%). Reduction of 10 with $\mathrm{H}_{2}-$ Lindlar catalyst or $\mathrm{Ph}_{3} \mathrm{P}^{7}$ gave only traces of the imine 2 , but H_{2}-Wilkinson's catalyst formed the imine $2(30 \%$, improved to 70% in the presence of 2 mol $\mathrm{dm}^{-3} \mathrm{HCl}$). The crystalline imine showed a shift in its UV absorption from 234 nm to 271 nm on acidification characteristic of α, β-unsaturated imines and gave ${ }^{1} \mathrm{H}$ NMR signals at $\delta 3.55(1 \mathrm{H}$, ddd, $J 18,10.5$ and 5.6$)$ and $3.91(1 \mathrm{H}, \mathrm{dd}, J 18$ and 5.6). Reaction of the imine 2 with NaBH_{4} converted it into the allylamine $21(\mathrm{R}=\mathrm{H})$.

We now turned to preparing analogues with steroidal sidechains. From our previous work it was clear that a route involving Michael addition of the enolate of the ketone 6 to α, β unsaturated aldehydes was unlikely to succeed. Alkylation of the ketone 6 with secondary allylic halides was unattractive due to difficulties in preparing and alkylating with such halides, so we decided to examine an approach using Michael addition of the enolate of 6 to α, β-unsaturated esters or nitriles despite anticipated problems with selective reduction later in the scheme. Ethyl (E)-4,7-dimethylocta-2,6-dienoate and a mixture of the Z and E related nitriles were prepared by Wittig condensation with 2,6-dimethylhept-5-enal, but no addition product was isolated on reaction with the enolate $\left(\mathrm{LiNPr}_{2}{ }_{2}\right)$ of 6, though isomerisation of the recovered ester suggested that an addition-elimination reaction was occurring. Our first attempt to prepare the more reactive ester 16 by Knovenagel condensation of 2,6-dimethylhept-5-enal with ethyl cyanoacetate gave four products (three of them inseparable); all were isomeric with the expected product 16 , but the mixture gave a ${ }^{1} \mathrm{H}$ NMR spectrum consistent with the three isomers of the cyclopentane $\mathbf{1 7}$ arising from an ene reaction of the ester $\mathbf{1 6}$. The UV, IR and ${ }^{1} \mathrm{H}$ NMR spectra of the minor product were in accord with structure $\mathbf{1 8}$ derived by an intramolecular Diels-

Alder reaction of $\mathbf{1 6}$; particularly significant was the presence of the EtO function in the absence of an ester absorption. By lowering the temperature of the reaction the required ester $\mathbf{1 6}$ could be obtained (68%) as a single isomer; that the nitrile was cis to the alkyl chain followed from ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constants for the $3-\mathrm{H}$ vinyl proton of 6 Hz to the $C=\mathrm{O}$ of the ester and 13.5 Hz to the CN . In addition a heteronuclear NOE was observed between $3-\mathrm{H}$ and the $C=\mathrm{O}$ of the ester. Similar condensation of 2,6-dimethylhept-5-enal with diethyl malonate gave the ester 15 (59%). Reaction of the enolate of 6 with the esters 15 and 16 gave the adducts $11(50 \%)$ and $12(78 \%)$ as the expected mixtures of isomers. Deethoxycarbonylation of the nitrile 12 was achieved using $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{NaCl}$-water ${ }^{8}$ to give nitrile 14 (84%); reaction of the ester 11 under similar conditions gave ester $13(26 \%$, improved to 68% by substitution of LiCl for NaCl). GLC of the nitrile 14 showed two peaks in a $75: 25$ ratio which constituted 95% of the product while the other spectroscopic evidence supported the proposed constitution, $v_{\max } 2240,1660$ and $1640 \mathrm{~cm}^{-1}$ and ${ }^{1} \mathrm{H}$ NMR singlets at 1.10 (angular methyl), 1.75 and 1.90 (methyls on cyclohexenone ring), and $1.60,1.62$ and 1.70 (methyls on side-chain double bond). While it is by no means proven, precedent ${ }^{9}$ suggests that the major products have the same relative stereochemistry at C-3 and C-1', which is that indicated, and differ in the stereochemistry of the 4-methyl.

Many reducing agents were investigated in attempts to

$11 \mathrm{X}=\mathrm{Z}=\mathrm{CO}_{2} \mathrm{Et}$
$12 \mathrm{X}=\mathrm{CN}, \mathrm{Z}=\mathrm{CO}_{2} \mathrm{Et}$
$13 \mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{Z}=\mathrm{H}$
$14 \mathrm{X}=\mathrm{CN}, \mathrm{Z}=\mathrm{H}$

generate the imine 4 from the nitrile 14 . Few notable results were obtained; reduction with LiAlH_{4} at $-78{ }^{\circ} \mathrm{C}$ gave a tetrahydro derivative formulated as $19(28 \%)$ due to the appearance in the ${ }^{1} \mathrm{H}$ NMR spectrum of additional secondary methyl signals and two one proton multiplets ($\delta 3.32$ and 3.83) and the disappearance of the cyclohexene methyl signals. Reduction of 14 with $\mathrm{Bu}^{\mathrm{i}}{ }_{2} \mathrm{AlH}$ (DIBAL) took a different course giving a compound formulated as the α-amino ether $\mathbf{2 0}$ (31\%); the ${ }^{1} \mathrm{H}$ NMR spectrum showed additional one proton signals at $\delta 3.15$ and 4.05 ascribed to $1-\mathrm{H}$ and $3-\mathrm{H}$. Acylation with an excess of $\mathrm{Ac}_{2} \mathrm{O}$-pyridine gave a monoacetyl derivative which was an amide ($\nu_{\text {max }} 1665 \mathrm{~cm}{ }^{1}$). In general cobalt compounds show greater Lewis acidity for nitrogen over oxygen and in the hope of achieving selective activation of the nitrile in compound 14 it was reduced with $\mathrm{NaBH}_{4}-\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. In initial experiments two inseparable isomeric compounds were formed (67%). In the ${ }^{1} \mathrm{H}$ NMR spectrum signals were present at $\delta 3.15$ and 3.25 showing identical J values of 13,4 and 1.5 Hz , consistent with the equatorial $\mathrm{C}-3$ hydrogens of $\mathbf{2 1}$. When the reduction was carried out using less NaBH_{4} a product was isolated (27%) in addition to unreacted 14 and the amine 21. This mixture of isomers gave a mass spectrum anticipated for the imines 4 and also exhibited the characteristic shift of $\lambda_{\text {max }}$ from 238 nm in neutral solution to 273 nm on acidification. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of the expected olefinic methyl ($\times 4$), angular methyl ($\times 1$) and secondary methyl ($\times 1$) signals; in addition to the vinylic hydrogen there were single hydrogen multiplets at $\delta 3.60$ and 3.83 consistent with the absorptions anticipated for the C-3 methylene group of 4 .

[^0]We also attempted to prepare the nitrile 22 which could be the precursor for the analogue 5 with the C_{1} alkylated steroid side-chain found in the natural products. The starting material was the Baeyer-Villiger oxidation product $\mathbf{2 3}^{10}$ of (-)menthone which was methanolised to the ester $24(87 \%)$ and then oxidised with Jones' reagent to the ketone 25 (89%). Wittig reaction of 25 with $\mathrm{Ph}_{3} \mathrm{PCH}_{2}$ gave the alkene 26 in poor yield (31%); this was improved to 72% using the reagents $\mathrm{CH}_{2} \mathrm{I}_{2}-\mathrm{Zn}-$ $\mathrm{TiCl}_{4} \cdot{ }^{11} \mathrm{~A}$ variety of oxalylation methods failed to convert 26 into the keto ester $\mathbf{3 1}$ so a lengthier route to $\mathbf{3 1}$ was adopted. LiAlH_{4} reduction of $\mathbf{2 6}$ gave alcohol 27 which was oxidised to aldehyde 28. Condensation of 28 with $\mathrm{LiC}(\mathrm{SMe})_{3}{ }^{12}$ yielded 29
which reacted with $\mathrm{AgNO}_{3}-\mathrm{Ag}_{2} \mathrm{O}-\mathrm{MeOH}^{13}$ to form the ester 30. MnO_{2} oxidation of $\mathbf{3 0}$ gave the keto ester $\mathbf{3 1}$. Reaction of 31 with $\mathrm{KCN}-\mathrm{AcOH}$ gave the unstable cyanohydrin 32 but all attempts to dehydrate it to the nitrile $\mathbf{2 2}$ met with failure.

22

$24 \mathrm{X}=\mathrm{H}, \mathrm{OH}$
$25 \mathrm{X}=0$
$26 \mathrm{X}=\mathrm{CH}_{2}$

$27 \mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}$
$28 \mathrm{X}=\mathrm{CHO}$
$2 \mathrm{X}=\mathrm{CH}\left(\mathrm{OH} \mathrm{C}_{(\mathrm{SM}}^{3}\right.$
$31 \mathrm{X}=\mathrm{COCO}_{2} \mathrm{Me}$
$32 \mathrm{X}=\mathrm{C}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Me}$
CN

Experimental

All ${ }^{1} \mathrm{H}$ NMR spectra were measured in CDCl_{3} at 300 MHz using a Bruker AC300 spectrometer and UV spectra in EtOH using a Shimadzu UV-VIS instrument. J Values are in Hz . $[\alpha]_{\mathrm{D}}$ Values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Low resolution mass spectra were measured on a Kratos MS25 instrument in the EI and CI modes, the latter with NH_{3} as carrier gas. Accurate mass measurements were determined using a Kratos MS30 instrument with a DS55 data system and IR spectra as thin films using a Perkin-Elmer 1710 FT IR spectrometer. The term 'work-up' implies washing the organic extract with brine, drying the solution with MgSO_{4}, filtration and concentration of the extract under reduced pressure. Light petroleum refers to the distillation fraction bp $40-60^{\circ} \mathrm{C}$.

6-Allyl-2,3,6-trimethylcyclohex-2-en-1-one 8

BuLi ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in cyclohexane, $3.1 \mathrm{~cm}^{3}$) was added to $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}\left(0.65 \mathrm{~cm}^{3}\right)$ and HMPA $\left(0.05 \mathrm{~cm}^{3}\right)$ in tetrahydrofuran (THF) at $-78^{\circ} \mathrm{C}$, the temp. of the mixture was raised to $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. The enone $6(0.59 \mathrm{~g})$ was added, the mixture stirred for 20 min and then allyl bromide (0.62 g) was added. After 1 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to rise to ambient temperature, poured into $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and worked up to give the ketone $\mathbf{8}$ as an oil $(0.668 \mathrm{~g}, 88 \%), v_{\text {max }} / \mathrm{cm}^{-1} 1660$ and $1640 ; \delta_{\mathrm{H}} 5.72(1 \mathrm{H}, \mathrm{m})$, $5.05(2 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s})$ and $1.05(3 \mathrm{H}, \mathrm{s}) ; m / z$ (EI) 178

6-(3'-Hydroxypropyl)-2,3,6-trimethylcyclohex-2-en-1-one 9

The alkene $8(0.453 \mathrm{~g})$ was dissolved in THF at $0^{\circ} \mathrm{C}$ and 9borabicyclo[3.3.1]nonane ($0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $6.1 \mathrm{~cm}^{3}$) added. After 15 min the temp. of the mixture was raised to $20^{\circ} \mathrm{C}$ for 1 h and then cooled to $0^{\circ} \mathrm{C}$, when $\mathrm{NaOH}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 3.05\right.$ cm^{3}) and $\mathrm{H}_{2} \mathrm{O}_{2}\left(100\right.$ vol.; $13.05 \mathrm{~cm}^{3}$) were added. After 30 min the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. Work-up gave an oil which was chromatographed on silica gel 60 (EtOAc-light petroleum; 1:4) to give recovered starting material $(0.195 \mathrm{~g})$ and the alcohol 9 as an oil $(0.25 \mathrm{~g}, 50 \%)$, $v_{\text {max }} / \mathrm{cm}^{-1} 3440,1660$ and $1640 ; \delta_{\mathrm{H}} 3.60(2 \mathrm{H}, \mathrm{t}, J 6), 1.90(3 \mathrm{H}, \mathrm{s})$, $1.75(3 \mathrm{H}, \mathrm{s})$ and $1.05(3 \mathrm{H}, \mathrm{s}) ; m / z$ (EI) 196 (Found: M^{+}, 196.1457. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $M, 196.1462$).

6-(3'-Methanesulfonyloxypropyl)-2,3,6-trimethylcyclohex-2-en-1-one
$\mathrm{MeSO}_{2} \mathrm{Cl}\left(0.36 \mathrm{~cm}^{3}\right)$ was added dropwise to the alcohol 9 $(0.452 \mathrm{~g})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the solution cooled
to $0^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . \mathrm{Et}_{3} \mathrm{~N}\left(0.96 \mathrm{~cm}^{3}\right)$ was then added dropwise and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(25 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 25 \mathrm{~cm}^{3}\right)$. Work-up gave an oil ($0.740 \mathrm{~g}, 76 \%$) which was purified by dry column chromatography on silica gel $60 \mathrm{H}(\mathrm{EtOAc}$-light petroleum; $1: 3$) to give the mesylate as an oil $(0.480 \mathrm{~g}), v_{\text {max }} / \mathrm{cm}^{-1} 1660$ and $1640 ; \delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}$, s), $1.9(3 \mathrm{H}, \mathrm{s}), 3.0(3 \mathrm{H}, \mathrm{s})$ and $4.2(2 \mathrm{H}, \mathrm{m}) ; m / z$ (CI) 275 (Found: M^{+}, 274.1227. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{SO}_{4}$ requires $M, 274.1239$).

6-(3'-Azidopropy)-2,3,6-trimethylcyclohex-2-en-1-one 10

$\mathrm{NaN}_{3}(0.5 \mathrm{~g})$ was added to the above mesylate (0.053 g) dissolved in a mixture of $\mathrm{Me}_{2} \mathrm{NCHO}\left(5 \mathrm{~cm}^{3}\right)$ and water $\left(0.5 \mathrm{~cm}^{3}\right)$. After it was stirred for 16 h , the mixture was poured into water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 25 \mathrm{~cm}^{3}\right)$ to give an oil $(0.035 \mathrm{~g})$ which was purified by flash column chromatography on silica gel 60 H (EtOAc-light petroleum; 1:4) to furnish the azide 10 as an oil $(0.030 \mathrm{~g}, 71 \%), \nu_{\text {max }} / \mathrm{cm}^{-1} 2095,1660$ and $1640 ; \delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{s})$, $1.75(3 \mathrm{H}, \mathrm{s}), 1.9(3 \mathrm{H}, \mathrm{s})$ and $3.25(2 \mathrm{H}, \mathrm{t}, J 6) ; m / z(\mathrm{CI}) 222$ (Found: $\mathrm{M}^{+}, 221.1515 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 221.1528$).

6,9,10-Trimethyl-2-azabicyclo[4.4.0]deca-1,9-diene 2

The azide $10(0.415 \mathrm{~g})$ was dissolved in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ and Wilkinson's catalyst (0.02 g) was added. The flask was evacuated and flushed several times with H_{2} after which the solution was stirred vigorously at room temp. for 1 h . The flask was then evacuated, flushed several times with N_{2} and HCl ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 3$ drops) added. The flask was again evacuated and flushed several times with H_{2}. After stirring the solution at room temperature for 30 min , the flask was evacuated and flushed with N_{2} several times. The reaction mixture was poured into $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 50 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. After a further extraction with $\mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)$ the combined aqueous phases were basified by the addition of solid NaOH . Extraction with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ and work-up gave an oil, which was purified by flash chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $1: 20$ to $1: 0$) to furnish the imine 2 as a colourless oil ($0.234 \mathrm{~g}, 70 \%$). Distillation at reduced pressure gave a white solid which decomposed readily when exposed to the air and so was stored under Ar at $-20^{\circ} \mathrm{C}, \mathrm{mp} 39-43^{\circ} \mathrm{C}$, bp $70-75^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg} ; \lambda_{\text {max }} / \mathrm{nm} 234$, changed to 271 upon addition of acid; $v_{\text {max }} / \mathrm{cm}^{-1} 1650$ and $1620 ; \delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{s}), 1.5(6$ $\mathrm{H}, \mathrm{m}), 1.8(6 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}$, ddd, J $5.6,10.5,18$) and 3.92 ($1 \mathrm{H}, \mathrm{dd}, J 5.6,18$); m / z (EI) 177 , (CI) 178 (Found: M^{+}, 177.1513. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $M, 177.1517$).

6,9,10-Trimethyl-2-azabicyclo[4.4.0]dec-9-ene

$\mathrm{NaBH}_{4}(0.3 \mathrm{~g})$ was added to a solution of imine $2(0.141 \mathrm{~g})$ in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 20 min , after which it was poured into water $\left(50 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{2} \mathrm{O}(50$ $\left.\mathrm{cm}^{3}\right)$. After further extraction with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ work-up gave a colourless oil $(0.121 \mathrm{~g})$ which was purified by flash chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $1: 2$ to $1: 0)$ to give the amine $21(\mathrm{R}=\mathrm{H})$ as a colourless oil $(0.070 \mathrm{~g}, 49 \%), v_{\text {max }} / \mathrm{cm}^{-1} 3300 ; \delta_{\mathrm{H}} 0.85(3 \mathrm{H}, \mathrm{s})$, $1.75(3 \mathrm{H}, \mathrm{s}), 2.63(1 \mathrm{H}, \mathrm{dt}, J 5,13)$ and $3.20(1 \mathrm{H}, \mathrm{dd}, J 4,13)$; m / z (EI) 179, (CI) 180 (Found: $\mathrm{M}^{+}, 178.1607 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}-\mathrm{H}$ requires $M, 178.1596$).

Ethyl 2-cyano-4,8-dimethylnona-2,7-dienoate 16

Piperidine ($1.69 \mathrm{~cm}^{3}$) was dissolved in toluene ($100 \mathrm{~cm}^{3}$) and the solution (containing $4 \AA$ molecular sieves) stirred at room temp. $\mathrm{AcOH}\left(0.97 \mathrm{~cm}^{3}\right)$ was added dropwise and the mixture stirred for 10 min . Ethyl cyanoacetate ($6.05 \mathrm{~cm}^{3}$) and 2,6-dimethyl-hept-5-enal $\left(9.0 \mathrm{~cm}^{3}\right)$ were added and the mixture warmed to $80^{\circ} \mathrm{C}$ for 1 h . The orange reaction mixture was cooled to room temp. and filtered through a pad of silica gel. The filtrate was evaporated under reduced pressure to yield the crude product as an orange oil (10.04 g) which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; 3:97)
to furnish the nitrile-ester 16 as a pale yellow oil $(9.66 \mathrm{~g}, 68 \%)$, bp $150-155^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg} ; v_{\text {max }} / \mathrm{cm}^{-1} 2232,1733$ and $1625 ; \delta_{\mathrm{H}}$ $1.26(3 \mathrm{H}, \mathrm{d}, J 7), 1.40(3 \mathrm{H}, \mathrm{t}, J 7), 1.67(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s})$, $2.10(2 \mathrm{H}, \mathrm{q}, J 7), 2.85(1 \mathrm{H}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{q}, J 7), 5.20(1 \mathrm{H}, \mathrm{tt}, J$ 1.5 and 7) and $7.61(1 \mathrm{H}, \mathrm{d}, J 11)$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ 14.21, 17.67, $19.35,25.69,26.46,36.50,37.49,62.66,109.12,114.15,124.29$, $132.74,161.77$ and $168.70 ; \mathrm{m} / \mathrm{z}$ (EI) 235, (CI) 253 and 236 (Found: $\mathrm{M}^{+}, 235.1582 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 235.1572$).

Cyclisation of the nitrile 16

The reaction was carried out as above using ethyl cyanoacetate ($0.2 \mathrm{~cm}^{3}$) and 2,6-dimethylhept-5-enal ($0.28 \mathrm{~cm}^{3}$) except that the mixture was boiled under reflux for 16 h . The orange reaction mixture was cooled to room temperature, poured into $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 50 \mathrm{~cm}^{3}\right)$ and extracted with PhMe $(2 \times 50$ cm^{3}). Work-up gave an orange oil (0.266 g), which was separated by chromatography on silica gel 60 into the orthoester $18(0.012 \mathrm{~g}, 3 \%), \lambda_{\text {max }} / \mathrm{nm} 238 ; v_{\text {max }} / \mathrm{cm}^{-1} 2200$ and $1630 ; \delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{d}, J 6.75), 1.29(3 \mathrm{H}, \mathrm{t}, J 7), 1.33(3 \mathrm{H}, \mathrm{s}), 1.35$ $(3 \mathrm{H}, \mathrm{s}), 1.40(1 \mathrm{H}, \mathrm{m}), 1.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.75(1 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}$, $\mathrm{m}), 2.11(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 6.75$)$ and $4.11(2 \mathrm{H}, \mathrm{dq}, J 2$ and 7); m / z (EI) 235, (CI) 253 and 236 (Found: $\mathrm{M}^{+}, 235.1575 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 235.1572$) and the three ($8: 1: 1$) isomeric cyclic nitrile esters $17(0.218 \mathrm{~g}, 53 \%$), $v_{\mathrm{max}^{+}} / \mathrm{cm}^{-1} 2250,1745$ and $1645 ; m / z$ (EI) 235, (CI) 253 (Found: $\mathrm{M}^{+}, 235.1580 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 235.1572$); δ_{H} (isomer A) $0.98(3 \mathrm{H}, \mathrm{d}, J 6), 1.33(3 \mathrm{H}, \mathrm{t}, J 6.75), 1.71(3 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}$, d, J 3), $4.26(2 \mathrm{H}, \mathrm{q}, J 7)$ and $4.81(2 \mathrm{H}, \mathrm{br} \mathrm{s})$; (isomer B) 1.08 (3 $\mathrm{H}, \mathrm{d}, J 6), 1.30(3 \mathrm{H}, \mathrm{t}, J 7), 1.65(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{d}, J 3), 4.14$ ($2 \mathrm{H}, \mathrm{q}, J 7$), $4.69(1 \mathrm{H}, \mathrm{t}, J 1.5)$ and $4.78(1 \mathrm{H}, \mathrm{s})$; (isomer C) 1.08 $(3 \mathrm{H}, \mathrm{d}, J 6), 1.32(3 \mathrm{H}, \mathrm{t}, J 6.75), 1.7(3 \mathrm{H}, \mathrm{s}), 3.36(1 \mathrm{H}, \mathrm{d}, J 3.5)$, $4.24(2 \mathrm{H}, \mathrm{q}, J 7), 4.94(1 \mathrm{H}, \mathrm{s})$ and $5.01(1 \mathrm{H}, \mathrm{s})$.

Ethyl 2-ethoxycarbonyl-4,8-dimethylnona-2,7-dienoate 15

A mixture of piperidine $\left(1.10 \mathrm{~cm}^{3}\right)$ and $\mathrm{AcOH}\left(0.63 \mathrm{~cm}^{3}\right)$ was dissolved in toluene ($50 \mathrm{~cm}^{3}$) containing $4 \AA$ molecular sieves. After 10 min diethyl malonate $\left(6.66 \mathrm{~cm}^{3}\right)$ and 2,6-dimethylhept-5-enal ($7.0 \mathrm{~cm}^{3}$) were added and the mixture warmed at $80^{\circ} \mathrm{C}$ for 1 h . The orange reaction mixture was cooled to room temp., poured into $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(1 \times 200\right.$ and $\left.1 \times 100 \mathrm{~cm}^{3}\right)$. Work-up gave an orange oil $(11.45 \mathrm{~g})$ which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $3: 97$ to $5: 95$) to furnish the diethyl ester 15 as an oil ($7.335 \mathrm{~g}, 59 \%$), $v_{\text {max }} / \mathrm{cm}^{-1}$ 1720 and $1640 ; \delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{d}, J 7), 1.30(6 \mathrm{H}, \mathrm{brt}, J 7), 1.42(2$ $\mathrm{H}, \mathrm{t}, J 7), 1.55(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.93(2 \mathrm{H}, \mathrm{q}, J 7), 2.58(1 \mathrm{H}$, br dd, $J 7$ and 11$), 4.28(4 \mathrm{H}, \mathrm{dq}, J 7), 5.05(1 \mathrm{H}, \mathrm{br}$ t) and $6.75(1$ $\mathrm{H}, \mathrm{d}, J 11$); m / z (CI) 300 and 283 (Found: $\mathrm{M}^{+}, 283.1906$. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{H}$ requires $M, 283.1909$).

Ethyl 2-cyano-4,8-dimethyl-3-($1^{\prime}, 3^{\prime}, 4^{\prime}$-trimethyl-2'-oxocyclo-hex-3'-enyl)non-7-enoate 12

The Li enolate of 2,3,6-trimethylcyclohex-2-en-1-one (4.95 g) was prepared as before and after 15 min at $-78^{\circ} \mathrm{C}$ the nitrile ester $16(8.9 \mathrm{~g})$ was added dropwise. The orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , after which it was warmed to room temp., poured into $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 200 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(1 \times 200\right.$ and $\left.1 \times 100 \mathrm{~cm}^{3}\right)$. Work-up gave an orange oil $(12.73 \mathrm{~g})$, which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $1: 9$ to $2: 8$) to give the nitrile esters 12 as an oil ($10.59 \mathrm{~g}, 78 \%$). The product was an inseparable mixture of isomers, $v_{\max } / \mathrm{cm}^{-1} 2260,1745,1665$ and $1640 ; \delta_{\mathrm{H}} 1.65(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.9(3 \mathrm{H}, \mathrm{s}), 2.03(2$ $\mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{m})$ and $5.05(1 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 373$, (CI) 391 and 374 (Found: $\mathrm{M}^{+}, 373.2627 . \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{3}$ requires $M, 373.2617$).

Ethyl 2-ethoxycarbonyl-4,8-dimethyl-3-($\mathbf{1}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-trimethyl-2'-oxocyclohex- $\mathbf{3}^{\prime}$-enyl)non-7-enoate 11

The Li enolate of 2,3,6-trimethylcyclohex-2-en-1-one (2.87 g) was prepared as before and after 15 min at $-78^{\circ} \mathrm{C}$ the ester 15
$(5.86 \mathrm{~g})$ was added. The orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , after which it was warmed to room temp., poured into $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 200 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (1×200 and $1 \times 100 \mathrm{~cm}^{3}$). Work-up gave an oil which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution; $5: 95$) to give diester 11 as an oil $(4.33 \mathrm{~g}, 50 \%), v_{\text {max }} / \mathrm{cm}^{-1} 1760,1730,1660$ and $1640 ; \delta_{\mathrm{H}} 1.05(3 \mathrm{H}$, s), $1.75(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{t}, J 5.5), 3.63(1 \mathrm{H}, \mathrm{d}, J$ 5.5), $4.20(4 \mathrm{H}, \mathrm{m})$ and $5.05(1 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / z(\mathrm{EI}) 420$, (CI) 421 (Found: $\mathrm{M}^{+}, 420.2877 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{5}$ requires $M, 420.2876$).

4,8-Dimethyl-3-($1^{\prime}, 3^{\prime}, 4^{\prime}$-trimethyl-2'-oxocyclohex-3'-enyl)non-

 7-enenitrile 14To a solution of nitrile ester $12(10.59 \mathrm{~g})$ in $\mathrm{Me}_{2} \mathrm{SO}\left(120 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaCl}(0.585 \mathrm{~g})$ in water $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was heated at $150^{\circ} \mathrm{C}$ for 1 h . The resultant orange solution was cooled to room temp., poured into brine ($200 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(1 \times 200\right.$ and $\left.1 \times 100 \mathrm{~cm}^{3}\right)$. Work-up gave a yellow oil which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; 1:9) to give the nitrile 14 as an oil $(7.19 \mathrm{~g}, 84 \%), v_{\text {max }} / \mathrm{cm}^{-1} 2240,1660$ and $1640 ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{d}, J$ $7.3), 1.00(2 \mathrm{H}, \mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{d}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.75$ $(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{s})$ and $5.09(1 \mathrm{H}, \mathrm{m}) ; m / z$ (EI) 301 (Found: $\mathrm{M}^{+}, 301.2403 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}$ requires $M, 301.2406$).

Ethyl 4,8-dimethyl-3-(1', $\mathbf{3}^{\prime}, 4^{\prime}$-trimethyl-2'-oxocyclohex-3'-enyl)-non-7-enoate 13
Diester $11(1.925 \mathrm{~g})$ was dissolved in a mixture of $\mathrm{Me}_{2} \mathrm{SO}$ $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(0.1 \mathrm{~cm}^{3}\right)$ containing $\mathrm{LiCl}(0.389 \mathrm{~g})$ and the mixture heated to $150^{\circ} \mathrm{C}$ for 1 h . The stirred mixture was heated under reflux for 3 h . The resultant orange solution was cooled to room temp., poured into brine ($100 \mathrm{~cm}^{3}$) and extracted with EtOAc ($2 \times 100 \mathrm{~cm}^{3}$). Work-up gave an oil which was purified by distillation to give the ester $13(1.08 \mathrm{~g}$, 68%), bp $180-185^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg} ; v_{\text {max }} / \mathrm{cm}^{-1} 1735,1660$ and 1640; $\delta_{\mathrm{H}} 0.83(3 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{t}, J 7.5), 1.58(3 \mathrm{H}, \mathrm{s}), 1.67$ $(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 2.53(1 \mathrm{H}, \mathrm{t}, J 6.75), 4.12$ $(2 \mathrm{H}, \mathrm{q}, J 7.5)$ and $5.06(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 11.49,14.12,17.59,20.20$, 20.84, 21.20, 25.58, 26.37, 29.12, 30.35, 30.61, 33.07, 33.23, $42.55,47.59,60.10,124.26,129.48,131.43,151.42,173.88$ and 202.65; m/z (EI) 348, (CI) 366 and 349 (Found: $\mathbf{M}^{+}, 348.2670$. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3}$ requires $M, 348.2664$).

3-Amino-6,9,10-trimethyl-5-(6-methylhept-5-en-2-yl)-2-oxabicyclo[4.4.0] deca-9-ene 20

DIBAL ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in toluene; $0.33 \mathrm{~cm}^{3}$) was added dropwise to the nitrile $14(0.050 \mathrm{~g})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ stirred at $-78^{\circ} \mathrm{C}$ under N_{2}. After 20 min a further aliquot of $\mathrm{Bu}^{\mathrm{i}}{ }_{2} \mathrm{AlH}\left(0.3 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then at room temp. for 16 h . The mixture was poured into brine (50 $\left.\mathrm{cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. Work-up gave an oil (0.048 g) which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $0: 10$ to $10: 0$) to give the amine 20 as an oil $(0.015 \mathrm{~g}, 31 \%), v_{\text {max }} / \mathrm{cm}^{-1} 3385$ and $3325 ; \delta_{\mathrm{H}} 1.52(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s})$, $3.15(1 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{m})$ and $5.10(1 \mathrm{H}, \mathrm{t}, J 5.4)$; $m / z(\mathrm{EI}) 305$ and 304, (CI) 306 (Found: $\mathrm{M}^{+}, 305.2726 . \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}$ requires $M, 305.2719$). Acetylation with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine-4-(dimethylamino) pyridine gave an oily amide, $v_{\max } / \mathrm{cm}^{-1} 3295$ and 1665; m / z (EI) 347, (CI) 365 and 348 (Found: \mathbf{M}^{+}, 347.2823. $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires $M, 347.2824$).

6,9,10-Trimethyl-5-(6-methylhept-5-en-2-yl)-2-azabicyclo[4.4.0] deca-1-ene 19

$\mathrm{LiAlH}_{4}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF; $\left.1.12 \mathrm{~cm}^{3}\right)$ was added dropwise to the nitrile $\mathbf{1 4}(0.049 \mathrm{~g})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. After 1 h saturated aq. potassium sodium tartrate $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. Work-up gave an oil (0.042 g) which was purified by chromatography on silica gel 60 (EtOAc-light petroleum;
gradient elution, $5: 95$ to $0: 1$) to give the imine $19(0.018 \mathrm{~g}$, 28%), $v_{\text {max }} / \mathrm{cm}^{-1} 1650 ; \delta_{\mathrm{H}} 0.80(3 \mathrm{H}, \mathrm{d}, J 7.3), 0.93(3 \mathrm{H}, \mathrm{d}, J 7.3)$, $0.98(3 \mathrm{H}, \mathrm{d}, J 7.3), 1.15(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.98$ $(2 \mathrm{H}, \mathrm{q}, J 7.3), 2.28(1 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{m})$ and $5.10(1 \mathrm{H}, \mathrm{t}, J 4) ; m / z(\mathrm{EI}) 289,(\mathrm{CI}) 308$ and 290 (Found: M^{+}, 289.2763. $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}$ requires $M, 289.2769$).

6,9,10-Trimethyl-5-(6-methylhept-5-en-2-yl)-2-azabicyclo-[4.4.0]deca-9-ene 21

Nitrile $14(0.102 \mathrm{~g})$ was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.162 \mathrm{~g})$ was added. After $15 \mathrm{~min} \mathrm{NaBH}_{4}(0.128$ g) was added to the purple solution which effervesced and turned black. The mixture was stirred overnight and then similar quantities of NaBH_{4} and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were added. After 1 h the mixture was poured into water ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. Work -up gave an oil (0.042 g) which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $5: 95$ to $0: 1$) to give the amines $21(0.065 \mathrm{~g}, 67 \%), m / z$ (EI) 289 (Found: M^{+}, 289.2763. $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}$ requires $M, 289.2770$); $\delta_{\mathrm{H}} 0.80(3 \mathrm{H}, \mathrm{d}, J 6)$, $0.86(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}$, s), $2.37(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{m})$ and $5.11(1 \mathrm{H}, \mathrm{m})$; in addition there were signals at $3.15(1 \mathrm{H}$, ddd, $J 1.5,4$ and 13) and 3.25 (1 H , ddd, $J 1.5,4$ and 13) for the individual isomers.

6,9,10-Trimethyl-5-(6-methylhept-5-en-2-yl)-2-azabicyclo-[4.4.0]deca-1,9-diene 4

Nitrile $14(0.075 \mathrm{~g})$ was dissolved in EtOH $\left(8 \mathrm{~cm}^{3}\right)$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.059 \mathrm{~g})$ was added at $0^{\circ} \mathrm{C}$. After $15 \mathrm{~min} \mathrm{NaBH}_{4}$ $(0.025 \mathrm{~g})$ was added to the purple solution which effervesced and turned black. The mixture was stirred overnight and then similar quantities of NaBH_{4} and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were added. After 15 min the mixture was poured into saturated aq. potassium sodium tartrate $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 50 \mathrm{~cm})$. Work-up gave an oil $(0.063 \mathrm{~g})$ which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $1: 3$ to $0: 1$) to give an oil ($0.019 \mathrm{~g}, 27 \%$), $\lambda_{\text {max }} / \mathrm{nm} 238$ (changed to 273 upon addition of dilute acid); $v_{\text {max }} / \mathrm{cm}^{-1} 1660$ and $1620 ; \delta_{\mathrm{H}} 0.80(3 \mathrm{H}, \mathrm{d}, J 6.25), 0.95(3 \mathrm{H}, \mathrm{m})$, $1.10(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}$, s), $2.33(2 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m})$ and $5.08(1 \mathrm{H}$, m); m / z (EI) 287 (Found: $\mathrm{M}^{+}, 287.2615 . \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}$ requires M, 287.2613).

Methyl 6-hydroxy-4,7-dimethyl-octanoate 24

$\mathrm{BF}_{3}-\mathrm{MeOH}$ complex ($12 \mathrm{wt} . \% \mathrm{BF}_{3} ; 200 \mathrm{~cm}^{3}$) was added slowly to lactone $23(9.04 \mathrm{~g})$ in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$. After stirring for 15 h at room temp., the solution was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(150 \mathrm{~cm}^{3}\right)$. Solid NaHCO_{3} was added to the mixture until neutral pH was reached. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 150 \mathrm{~cm}^{3}\right)$ and worked up to give an oil $(10 \mathrm{~g})$ which was purified by distillation to furnish the hydroxy ester 24 as an oil ($9.36 \mathrm{~g}, 87 \%$), bp $110-120^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}-13.04$ (c 0.034 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3455$ and $1740 ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{d}, J$ 6.5), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.75$), 0.99 ($3 \mathrm{H}, \mathrm{d}, J 6.75$), 2.17 ($1 \mathrm{H}, \mathrm{dd}, J$ 7.5 and 14.5), 2.35 ($1 \mathrm{H}, \mathrm{dd}, J 6$ and 14.5), 3.37 (1 H, ddd, $J 3.25$, 4.75 and 8) and $3.70(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 17.0,18.9,19.9,30.5,31.4,33.0$, 33.4, 41.4, 51.4, 76.9 and 173.7; m / z (CI) 220 (Found: M^{+}, 203.1648. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{H}$ requires $M, 203.1647$).

Methyl 4,7-dimethyl-6-oxo-octanoate 25

Jones' reagent was added dropwise to the hydroxy ester 24 $(12.81 \mathrm{~g})$ dissolved in AnalaR $\mathrm{Me}_{2} \mathrm{CO}\left(200 \mathrm{~cm}^{3}\right)$ and the solution stirred at $0^{\circ} \mathrm{C}$; addition was continued until an orange colour persisted ($\approx 15 \mathrm{~cm}^{3}$). Pri${ }^{\mathrm{O}} \mathrm{OH}$ was added dropwise until the solution turned green, whereupon the mixture was poured into water $\left(150 \mathrm{~cm}^{3}\right)$ and extracted with $\operatorname{EtOAc}\left(2 \times 150 \mathrm{~cm}^{3}\right)$. Work-up gave an oil which was purified by distillation to yield the keto ester 25 as an oil ($11.64 \mathrm{~g}, 89 \%$), bp $105-110^{\circ} \mathrm{C} / 0.65$ $\mathrm{mmHg} ;[\alpha]_{\mathrm{D}}+4.06$ (neat); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1710; $\delta_{\mathrm{H}} 0.89$ (3

H, d, $J 6.5), 1.34(6 \mathrm{H}, \mathrm{d}, J 7), 2.10(1 \mathrm{H}, \mathrm{dd}, J 8$ and 15$), 2.26(1$ H , dd, $J 6$ and 15) and $3.60(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 18.3,18.31,19.6,30.0$, 30.3, 37.8, 40.8, 41.4, 51.4, 173.4 and 214.4; m / z (EI) 200, (CI) 218 and 201 (Found: $\mathrm{M}^{+}, 200.1406 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3}$ requires M, 200.1412).

Methyl 6-isopropyl-3-methylhept-6-enoate 26

Zn powder $(34.24 \mathrm{~g})$ was stirred in THF $\left(150 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under Ar and $\mathrm{CH}_{2} \mathrm{I}_{2}\left(23.4 \mathrm{~cm}^{3}\right)$ was added at such a rate so as to keep the temp. of the mixture below $15^{\circ} \mathrm{C}$. When the slurry cooled to $0^{\circ} \mathrm{C}, \mathrm{TiCl}_{4}\left(6.7 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise, so that the temp. of the mixture remained below $15^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then keto ester $\mathbf{2 5}$ (11.64 g) was added slowly. The resultant brown slurry was stirred at room temp. for 16 h , poured into water $\left(200 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}\right)$, filtered through a pad of Celite, washed with brine $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried and concentrated under reduced pressure to yield an oil. Distillation gave the ester $26(8.29 \mathrm{~g}, 72 \%)$, bp $90-100^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}$ +4.58 (neat); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and $1640 ; \delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{d}, J 6.5)$, $1.01(6 \mathrm{H}, \mathrm{d}, J 7), 2.14(1 \mathrm{H}, \mathrm{dd}, J 8$ and 14.5), $2.33(1 \mathrm{H}, \mathrm{dd}, J 6$ and 14.5), $3.65(3 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{d}, J 1)$ and $4.73(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 19.7, 21.9, 21.8, 30.3, 31.7, 33.7, 35.2, 41.6, 51.4, 106.4, 155.8 and 173.6; m / z (EI) 198, (CI) 216 and 199 (Found: M^{+}, 198.1627. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 198.1620$).

6-Isopropyl-3-methylhept-6-en-1-ol 27

$\mathrm{LiAlH}_{4}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{3}\right.$ in THF; $2 \mathrm{~cm}^{3}$) was added to ester 26 $(0.332 \mathrm{~g})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and then at room temp. for 15 h after which $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 2 \mathrm{~cm}^{3}\right)$ was added dropwise. The white slurry was filtered through a pad of Celite which was washed with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The organic phase was dried and concentrated under reduced pressure to yield an oil; distillation furnished the alcohol 27 as an oil ($0.251 \mathrm{~g}, 89 \%$), bp $145-155^{\circ} \mathrm{C} / 0.4 \mathrm{mmHg} ; v_{\text {max }} / \mathrm{cm}^{1} 3330,3085$ and $1640 ; \delta_{\mathrm{H}} 0.93$ ($3 \mathrm{H}, \mathrm{d}, J 6.3$), $1.03(6 \mathrm{H}, \mathrm{d}, J 6.8), 3.70(2 \mathrm{H}, \mathrm{m}), 4.68(1 \mathrm{H}, \mathrm{d}, J$ 1) and $4.73(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 19.6,21.90,21.93,29.5,31.8,33.8,35.7$, 39.9, 61.2, 106.1 and 156.4; m / z (EI) 170 (Found: $\mathrm{M}^{+}, 170.1671$. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}$ requires $M, 170.1671$).

6-Isopropyl-3-methylhept-6-enal 28

Pyridinium chlorochromate (0.22 g) was ground together with silica gel $(0.22 \mathrm{~g})$. The resulting pale orange solid was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at room temp. under N_{2} and the alcohol 27 (0.087 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise. The resulting brown slurry was stirred at room temp. for 16 h after which $\mathrm{Et}_{2} \mathrm{O}\left(45 \mathrm{~cm}^{3}\right)$ was added and a brown precipitate was formed. The slurry was filtered through a pad of silica gel and the pad washed with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. Evaporation of the filtrate yielded a crude product which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; 5:95) to give the aldehyde 28 as an oil ($0.066 \mathrm{~g}, 79 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1725$ and 1640 ; $\delta_{\mathrm{H}} 0.98(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.03(6 \mathrm{H}, \mathrm{d}, J 6.7), 2.44(1 \mathrm{H}, \mathrm{ddd}, J 2,5.5$ and 16), $4.67(1 \mathrm{H}, \mathrm{d}, J 1.5), 4.74(1 \mathrm{H}, \mathrm{s})$ and $9.76(1 \mathrm{H}, \mathrm{t}, J 2) ; \delta_{\mathrm{C}}$ $19.9,21.84,21.88,28.0,31.7,33.7,35.4,51.0,106.6,155.6$ and 202.8; m / z (EI) 168, (CI) 186 and 169 (Found: $\mathrm{M}^{+}, 168.1512$. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ requires $M, 168.1514$).

7-Isopropyl-4-methyl-1,1,1-trimethylsulfanyloct-7-en-2-ol 29

BuLi ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $13.14 \mathrm{~cm}^{3}$) was added to $\mathrm{HC}(\mathrm{SMe})_{3}\left(2.8 \mathrm{~cm}^{3}\right)$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under Ar. After 5 min a solution of aldehyde $28(3.21 \mathrm{~g})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 40 min and then at $-20^{\circ} \mathrm{C}$ for 1 h . Water ($50 \mathrm{~cm}^{3}$) was added cautiously and the slurry extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. Work-up gave an oil which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $0: 1$ to $3: 97$) to give the ortho esters 29 as an oil ($5.61 \mathrm{~g}, 91 \%$). The product
was an inseparable mixture of isomers, m / z (EI) 275, (CI) 340 (Found: M^{+}, 275.1505. $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{OS}_{3}-\mathrm{CH}_{3} \mathrm{~S}$ requires M, 275.1503).

Methyl 2-hydroxy-7-isopropyl-4-methyloct-7-enoate 30
The ortho ester $29(5.61 \mathrm{~g})$ was dissolved in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ and the solution stirred at $0^{\circ} \mathrm{C} . \mathrm{AgNO}_{3}(3.75 \mathrm{~g})$ and silver oxide $(8.11 \mathrm{~g})$ were added in one portion and the resultant slurry was stirred at $0^{\circ} \mathrm{C}$ for 1 h under Ar. The mixture was poured into water ($100 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with saturated aq. NaHCO_{3} ($100 \mathrm{~cm}^{3}$), dilute aq. potassium sodium tartrate $\left(100 \mathrm{~cm}^{3}\right)$ and worked up to give an oil which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $0: 1$ to 4:96) to yield the hydroxy esters 30 as a colourless oil (2.72 g , 70%), $[\alpha]_{\mathrm{D}}+1.66$ (neat); $v_{\text {max }} / \mathrm{cm}^{-1} 3485,1740$ and $1640 ; \delta_{\mathrm{C}}$ 176.29 and $176.20 ; m / z(\mathrm{EI}) 228,(\mathrm{CI}) 246$ and 229 (Found: M^{+}, 246.2074. $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{3}+\mathrm{NH}_{4}$ requires M, 246.2069).

Methyl 7-isopropyl-4-methyl-2-oxooct-7-enoate 31

Jones' reagent ($\approx 4 \mathrm{~cm}^{3}$) was added dropwise to the hydroxy esters $30(2.72 \mathrm{~g})$ dissolved in $\mathrm{Me}_{2} \mathrm{CO}\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ until an orange colour persisted. $\mathrm{Pr}^{\mathrm{i} O H}$ was added until the solution turned green. The mixture was poured into water ($50 \mathrm{~cm}^{3}$) and extracted with EtOAc ($2 \times 50 \mathrm{~cm}^{3}$). Work-up gave an oil which was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $0: 1$ to 3:97) to give the keto ester $31(1.34 \mathrm{~g}, 50 \%)$, bp $130-135^{\circ} \mathrm{C} / 0.7 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}+6.3(c 0.039$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1730$ and $1640 ; \delta_{\mathrm{H}} 0.96(3 \mathrm{H}, \mathrm{d}, J 6.75)$, $1.00(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.02(3 \mathrm{H}, \mathrm{d}, J 6.5), 2.67(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 17), 2.85 ($1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 17), $3.85(3 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{d}, J 1.3)$ and $4.73(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 19.7,21.8,21.9,28.7,31.7,33.7,35.3,46.4$, $52.8,106.5,155.6,161.8$ and 194.0; m / z (CI) 244 and 227 (Found: $\mathrm{M}^{+}, 244.1916 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{3}+\mathrm{NH}_{4}$ requires M, 244.1913).

Methyl 2-cyano-2-hydroxy-7-isopropyl-4-methyloct-7-enoate 32 The α-keto ester $31(0.549 \mathrm{~g})$ in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was added slowly to $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ containing $\mathrm{KCN}(0.237 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$ under N_{2}. Dropwise addition of $\mathrm{AcOH}\left(0.278 \mathrm{~cm}^{3}\right)$ caused an exothermic reaction and a white precipitate to be formed. The mixture was warmed to room temp. and stirred for 1 h after which it was poured into water $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CHCl}_{3}(2 \times 25$ cm^{3}). Work-up in the usual way gave the cyanohydrin 32 as an oil $(0.568 \mathrm{~g}, 92 \%)$. This product was used without any further purification because of its instability; $\nu_{\text {max }} / \mathrm{cm}^{-1} 3450,2245$, 1755 and $1640 ; \delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{d}, J 6), 1.03(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.09(3$ $\mathrm{H}, \mathrm{d}, J 6), 3.95(3 \mathrm{H}, \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{dd}, J 1$ and 5$)$ and $4.75(1 \mathrm{H}$, brs); m / z (EI) 253 (Found: $\mathrm{M}^{+}, 253.1676 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $M, 253.1678)$.

Acknowledgements

We thank the SERC and Zeneca Agrochemicals plc for a CASE award and financial assistance.

References

1 J. Hill, J. K. Sutherland and P. Crowley, J. Chem. Soc., Perkin Trans. I, 1992, 969.
2 J. W. Chamberlin, M. D. Chaney, S. Chen, P. V. Demarco, N. D. Jones and J. L. Occolowitz, J. Antibiot., 1974, 27, 992; L. D. Boek, M. M. Hoen, J. E. Westhead, R. K. Wolter and D. L. Thomas, J. Antibiot., 1975, 28, 95; K. H. Michel, R. L. Hamill, S. H. Larsen and R. H. Williams, J. Antibiot., 1975, 28, 102; R. S. Gordee and T. F. Butler, J. Antibiot., 1975, 28, 112; J. D. Bu'lock, K. Demnerova, W. J. Kilgour, F. Knauseder and A. Steinbuchel, Biotechnol. Lett., 1980, 2, 285.
3 W. G. Dauben and D. M. Michno, J. Org. Chem., 1977, 42, 682.
4 K. Narasaka, K. Soai and T. Mukaiyama, Chem. Lett., 1974, 1223.
5 K. Narasaka, K. Soai, Y. Aikawa and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1976, 49, 779.

6 G. Kabalka, K. A. R. Sastry, G. W. McCollum and H. Yoshioka, J. Org. Chem., 1981, 46, 4296.

7 S. Nagarajan and B. Ganem, J. Org. Chem., 1987, 52, 5044.
8 A. P. Krapcho and A. J. Lovey, Tetrahedron Lett., 1973, 957.
9 E. J. Corey and I. N. Houpis, J. Am. Chem. Soc., 1990, 112 8997.

10 H. Suginome and S. Yamada, J. Org. Chem., 1985, 50, 2489.
11 F. N. Tebbe, G. W. Parshall and G. S. Reddy, J. Am. Chem. Soc., 1978, 100, 3611 ; J. Hibino, T. Okazoe, K. Takai and H. Nozaki, Tetrahedron Lett., 1985, 26, 5579.

12 K. Beautement and J. M. Clough, Tetrahedron Lett., 1987, 28, 475.
13 D. Gravel, C. Vaziri and S. Rahal, J. Chem. Soc., Chem. Commun., 1972, 1323.

Paper 5/05019G
Received 28th July 1995
Accepted 22nd September 1995

[^0]: $R=$

 19

 20

 21

